AutoPulse®

Когда необходимо механическое устройство для СЛР?

Необходимость использования механических устройств для СЛР на догоспитальном этапе, когда количество персонала ограничено, а пациентов нужно транспортировать, очевидна. В стационарах, где в проведении реанимационных мероприятий задействовано значительное количество персонала, роль механических устройств для СЛР может быть не так очевидна. Тем не менее, есть определенные показания, время и место для механических устройств для СЛР при внутрибольничных остановках кровообращения.

При нехватке персонала

Факты очевидны. Количество неблагоприятных исходов увеличивается ночью и в выходные дни, когда имеется дефицит квалифицированного медицинского персонала. Не только нехватка персонала, но и отрыв медицинских работников от выполняемых ими обязанностей нарушает установленный порядок их работы и может негативно отразиться на оказании медицинской помощи другим пациентам. Случай остановки сердца может нарушить работу отделения реанимации небольшой больницы, даже если она произошла не в самом отделении.

Когда ручная СЛР небезопасна

К счастью, в отделениях рентгенэндоваскулярной хирургии остановки сердца случаются редко, однако в таких случаях для защиты персонала от превышения дозы облучения процедура должна быть остановлена, а стол возвращен в стартовое положение — и это во время, когда критически важно восстановить кровоснабжение миокарда. AutoPulse поддерживает кровообращение, позволяя осуществлять доступ к сосудам, и обеспечивает достаточную органную перфузию.

При длительной остановке сердца

При затянувшихся реанимационных мерпоприятиях привлекаемые ресурсы и качество проводимой СЛР могут значительно варьироваться. Более того, недавно опубликованная статья в журнале The Lancet свидетельствует о преждевременном прекращении СЛР у пациентов с асистолией во многих больницах, в то время как более длительная СЛР может увеличить выживаемость на 20%.2 Кроме того, пациенты, находящиеся в коме вследствие гипотермии, должны быть согреты до принятия решения о прекращении СЛР. Неинвазивное устройство для СЛР AutoPulse® может работать сколь угодно долго, пока пациет не будет согрет. И как показывает недавний случай, зафиксированный в Лондоне, гипотермия и кома в течение трех часов не обязательно подразумевают неблагоприятный исход, если поддерживается достаточное кровоснабжение жизненно важных органов.3

Панель управления AutoPulse

Исследования показывают, что благодаря простоте использования AutoPulse обученный персонал может запустить устройство и начать компрессии менее чем за 30 секунд.

Когда требуется время подумать

Существует множество причин потенциально обратимой остановки сердца, начиная от тампонады сердца при травме и заканчивая послеоперационной тромбоэмболией или передозировкой наркотических средств у пациента по неосторожности. Хаос при оказании помощи пациенту с остановкой сердца, не оставляет времени для размышлений. Однако, когда задача по поддержанию кровообращения ложится на автоматическое устройство для СЛР, появляется время и возможность обдумать ситуацию и спланировать дальнейшие действия.

Кто должен отвечать за механическое устройство для СЛР?

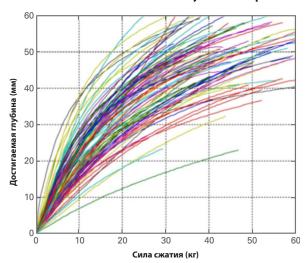
10-летний опыт работы показывает, что использование механического устройства для СЛР повышает эффективность оказания помощи специализированными реанимационными бригадами. Остановка сердца - достаточно редкая ситуация, поэтому поддержание необходимых навыков работы с механической системой СЛР в разных отделениях представляет некоторую сложность. Обычно обучение работе с AutoPulse проходят врачи реаниматологи и интенсивисты. Основой эффективной и оперативной эксплуатации AutoPulse являются проведение тренингов и регулярная практика. Исследования показывают, что обученный персонал может запустить AutoPulse на пациенте менее чем за 30 секунд, сводя к минимуму перерывы в компрессиях и обеспечивая высокую фракцию компрессий. 4

AutoPulse – ваш выбор аппаратной сердечно-легочной реанимации

Все другие механические устройства для СЛР воспроизводят мануальные компрессии, используя поршневой механизм для непрямого массажа сердца. AutoPulse обеспечивает компрессии с распределением нагрузки по всей поверхности грудной клетки. Таким образом сдавливается вся грудная полость, а не один участок в области грудины, что обеспечивает практически нормальный уровень кровообращения при минимальном риске повреждений.5

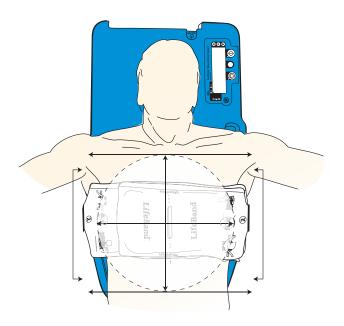
«Интеллектуальные» функции системы AutoPulse

Каждый пациент, которому требуется СЛР, индивидуален. Поэтому AutoPulse рассчитывает компрессии для каждого пациента индивидуально, сжимая грудную клетку на 20%. AutoPulse измеряет окружность грудной клетки при запуске и за первые 6–8 компрессионных движений определяет ее податливость. AutoPulse автоматически подстраивается под параметры пациента, рассчитывая силу необходимую для достижения оптимальной глубины компрессий.


Система AutoPulse надежна

AutoPulse является единственным механическим устройством для СЛР, демонстрирующим значительное клиническое превосходство в сравнительных испытаниях на людях. Во множестве сравнительных исследований показано улучшение мониторируемых показателей, поскольку AutoPulse обеспечивает наилучший кровоток. В сравнении с ручными компрессиями AutoPulse обеспечивает более высокую частоту восстановления самостоятельного кровообращения.

Результаты исследований на людях


- Систолическое артериальное давление > 100 мм рт. ст.
- Значения SpO₂ > 90%
- Повышенние уровня СО₂ в конце выдоха

Зависимость силы сжатия от глубины компрессий⁶

Диапазон силы, требуемой для достижения необходимой глубины компрессии

Как показано на рисунке, сила, требующаяся для достижения необходимой компрессии, может отличаться на 400%. Встроенный в платформу AutoPulse сенсор регулирует прилагаемую силу таким образом, чтобы у всех пациентов, независимо от размера и податливости грудной клетки, проводились правильные компрессии.

AutoPulse автоматически адаптируется к параметрам пациента

После измерения окружности и податливости грудной клетки каждого отдельного пациента, AutoPulse рассчитывает силу сжатия, необходимую для сдавления грудной клетки на 20% от переде-заднего размера.

Технология Сила сжа		атия (кг)	Контактная поверхность (см²)
Ремень, распределяющий нагрузку 127		7,0	645,2
Поршневый привод	50,0		28,4
в сис	сжатия гемах с невым одом	с равног	атия в системах мерным целением нагрузки

Данные исследований, проведенных в автомобильной промышленности, свидетельствуют о том, что при возрастании давления на грудную клетку выше 0,42 кг/см², частота и тяжесть травм, вызванных компрессиями, возрастают. Давление, оказываемое AutoPulse, значительно ниже порога травмирования.

Устройство AutoPulse безопасно

Благодаря равномерному распределению компрессионной нагрузки давление в любой точке грудной клетки составляет примерно одну десятую долю давления, оказываемого на грудину при ручной компрессии. Исследования показывают, что распределение компрессионной нагрузки на большую площадь обеспечивает близкий к нормальному уровень кровообращения, при этом давление, оказываемое на единицу площади находится значительно ниже порога травмирования.

В некоторых случаях при внутрибольничной остановке сердца требуется проведение сердечно-легочной реанимации с использованием механических устройств. В данном случае надежным, эффективным и безопасным решением является AutoPulse.

Корпорация ZOLL Medical Corporation, входящая в группу компаний Asahi Kasei Group, занимается разработкой и продажей медицинского оборудования и программного обеспечения, помогающих усовершенствовать неотложную медицинскую помощь и спасать жизни людей за счет повышения эффективности медицинского обслуживания и производительности работы. Предлагая продукцию для проведения дефибрилляции и мониторинга, поддержания кровообращения и сердечнолегочной реанимации, управления данными, инфузионной терапии и инвазивной терморегуляции, корпорация ZOLL предоставляет полный набор технологий для облегчения работы персонала стационаров и служб скорой медицинской помощи, а также лиц, оказывающих первую помощь пострадавшим, нуждающимся в реанимации и интенсивной терапии. Для получения дополнительной информации посетите сайт www.zoll.com.

Asahi Kasei Group – это объединение разнопрофильных компаний во главе с холдинговой компанией Asahi Kasei Corp., осуществляющее деятельность в сфере химической промышленности и производстве волокон, строительства и строительных материалов, электроники и здравоохранения. Деятельность Asahi Kasei Group в сфере здравоохранения включает разработку и изготовление оборудования и систем для проведения интенсивной терапии, диализа, терапевтического афереза, переливания крови, производство биотерапевтических препаратов, а также фармацевтических препаратов, диагностических реактивов и продуктов питания. Более 25000 сотрудников Asahi Kasei Group по всему миру обслуживают клиентов из более чем 100 стран мира. Для получения дополнительной информации посетите сайт www.asahi-kasei.co.jp/asahi/en/.

© 2014 ZOLL Medical Corporation. «Advancing Resuscitation. Today», LifeBand, AutoPulse и ZOLL – товарные знаки или зарегистрированные товарные знаки корпорации ZOLL Medical Corporation в США и/или иных странах. Все остальные товарные знаки являются собственностью соответствующих владельцев.

ADVANCING RESUSCITATION. TODAY.®

ZOLL Medical Corporation Всемирная штаб-квартира269 Mill Road
Chelmsford, MA 01824 США
978-421-9655
800-348-9011

Поиск контактной информации подразделений, а также других офисов компании по всему миру доступен по adpecy www.zoll.com/contacts.

¹ Peberdy MA, et al. *JAMA*, 2008 Feb 20:299(7):785–92.

 $^{^2}$ Goldberger ZD, et al. *Lancet*. 2012 Sept. 4 (Опубликовано в электронной версии до отправки в печать).

³ Dailv Mirror, Jan. 14, 2011.

⁴Tomte O, et al. *Resuscitation*. 2009;(80):1152–57.

⁵ Halperin HR, et al. *J Am Coll Cardiol*. 2004;44(11):2214–20.

⁶Tomlinson AE, et al. Resuscitation. 2007 Mar;72(3):364–70.